
Fine-Tuning Large Language Models (LLMs)

Oren Sultan – AI / NLP Researcher
Computer Science PhD candidate @HebrewU
Researcher – Student @Lightricks (DS Group, LTX Studio)

https://www.linkedin.com/in/oren-sultan-93039146/

Agenda

● Fine-tuning overview
● Coffee break ☕
● Fine-tuning code example

📖

💻

● Real use-case from Lightricks
○ Deployed in VideoLeap
○ Resulting in a research paper titled:

“Visual Editing with LLM-based Tool Chaining:
An Efficient Distillation Approach for
Real-Time Applications”

Session 1
(23.9.24)

Session 2
(30.9.24)

��

What You'll Learn Today

● Fine-tuning overview
○ What is Fine-tuning?
○ When to use Prompt Engineering vs. RAG vs. Fine-tuning?
○ How to Fine-tune an LLM?

● Fine-tuning code example
○ How to implement Supervised Fine-tuning (SFT) in code?
○ How to evaluate an LLM?

��

Part I: Fine-Tuning Overview 📖

Pre-training

sd?@ upon

● Model at the start
○ Zero knowledge about the world
○ Can’t form English words

● Task: Next token prediction
● Data: Giant corpus of text data from the web: “unlabeled”
● Training: Self-supervised learning

● After training
○ Learns language
○ Learns Knowledge

upon

LLM

Once upon a
midnight dreary
while I pondered.

What is Fine-tuning?

● Fine-tuning is taking a pre-trained (general purpose) model and train some of its weights.
○ A general-purpose base model → specialized model for a particular use case.

● Fine-tuning vs. prompt engineering:
○ Gets the model to learn the data (adjusting model’s weights), rather than just get access to it.
○ Let you put more data into the model than what fits in the prompt.

● Fine-tuning vs. pre-training:
○ Requires significantly less data and computational resources.

Pre-trained
LLM

Fine-tuning
Fine-tuned

LLM

Prompting

Dataset

Base model: GPT-3 Fine-tuned model: GPT-3.5-turbo (ChatGPT)
Prompt: How to fine-tune a model?

Completion:
How can I control the complexity of a model?
How do I know when my model is done?
How do I test a model?
…

Prompt: How to fine-tune a model?

Completion:
Fine-tuning a model typically involves taking a pre-trained model and
further training it on a new dataset specific to your task. Here are the
general steps to fine-tune a model:
1. Choose a pre-trained model: Start by selecting a pre-trained model that
is relevant to your task.…
2. Prepare your new dataset: Collect or create a dataset that is specific to
your task…
3. Modify the top layers: Remove the final layers of the pre-trained
model…
4. Fine-tune the model: Train the modified model on your new dataset…
5. Evaluate the model: Once training is complete, evaluate the fine-tuned
model on the validation set to assess its performance…
…

Change behavior (instruction-based):
More desirable, practical and helpful completions!

Base model vs. Fine-tuned model Completions – Example I

Change knowledge

Primary Care
Physician (PCP)

Cardiologist

Dermatologist

Skin irritation
Redness
Itching

Base Model LLM

Probably acne.

Dermatology data.

Skin irritation
Redness
Itching

You have a mix of non-inflammatory
comedonal acne and inflammatory
papulopustular acne.

Fine-tuned LLM

Base model vs. Fine-tuned model Completions – Example II

Why to Fine-tune?

A smaller (fine-tuned) model can often outperform larger (more expensive) models
on the set of tasks on which it was fine-tuned!

Instruct GPT (1.3B)

GPT-3 (175B)

>

OpenAI paper: "Training language models to follow instructions with human feedback"

Prompt Engineering vs. Fine-tuning

Prompting Fine-tuning
+ No data (very few) to get started
+ Smaller upfront cost
+ No technical knowledge needed

+ Nearly unlimited data fits
+ Learn from your data (user’s behavioral signals)
+ Less cost afterwards if smaller model

Generic, side projects, prototypes Domain-specific, enterprise, production usage

- Much less data fits
- Forgets data
- Hallucinations

- More high-quality data
- Upfront compute cost
- Needs some technical knowledge

Benefits of Fine-tuning your own LLM

Cost3
● Lower cost per request
● Increased transparency
● Greater control

Performance1 ● Decrease Hallucinations
● Increase consistency

Reliability4
● Control uptime
● Lower latency
● Moderation

�
�

��

��

Privacy2 ● On premise
● Prevent leakage

🚱

Retrieval-Augmented Generation (RAG) vs. Fine-tuning

RAG Fine-tuning
+ Better in integrating new (dynamic) knowledge
+ No training, no retraining
+ More accurate responses – reducing hallucinations

+ Optimizes LLM performance for specific tasks
+ Precise control over the training data

○ Adjusting tone / style of a language
○ Aligning with user preferences
○ Controlling output format

+ Improve efficiency (latency & cost)

Generic, context-heavy tasks, dynamic knowledge injection Improve performance for specific task

- Slower: two-step process
- Lower performance in specific tasks with high-quality data
- Not suitable for changing the behavior of the responses

- Not suitable for learning evolving knowledge
- More expensive (high-quality data, re-training)
- Still prone to hallucinations

3 Ways to Fine-tune

1) Self-supervised 2) Supervised 3) Reinforcement Learning

LLM

Training data

Input: Who was the first President of the USA?
Output: George Washington

"""Please answer the following question.

Q: {Question}

A: {Answer}"""

1) Supervised Fine-tuning

2) Train Reward model

Prompt

Prompt

3) RL with PPO
problem.

Houston, we have a

Reinforcement Learning from Human Feedback (RLHF)

OpenAI paper: "Training language models to follow instructions with human feedback"

Goal: to improve the alignment, performance, and safety of LLMs by incorporating human
judgments into their training process.

Reinforcement Learning from Human Feedback (RLHF)

3 Ways to Parameter Training

Retrain all parameters (Full)1 ● Computationally expensive
● Phenomenon of "catastrophic forgetting"

Transfer Learning (TL)2 ● Freeze most of the parameters
● Fine-tune the last few layers (head)

Parameter Efficient
Fine-tuning (PEFT)3

● Freeze all of the parameters
● Augmenting a relatively small number

of trainable parameters.

LLMs are based on the Transformers Architecture
"Attention Is All You Need"
(Vaswani et al.)

Encoder only models (Auto encoder):
Training objective: Pre-trained using MLM (Mask Language Modeling).

The training objective is to predict the masked token (denoising objective).

Models: BERT, ROBERTA. Tasks: sentiment analysis, NER.

Decoder only (Auto-regressive):
Training objective: to predict the next token.

They can see only previous tokens.

Models: GPT, LLaMA. Tasks: Text generation.

Encoder - Decoder (sequence to sequence):
Training objective: in T5 we train the encoder by span corruption (mask

few adjacent tokens), then replaced by <x> token (which is not part of the

dictionary). Then, the decoder's goal is to reconstruct it.

Models: T5, BART. Tasks: Translation, Summarization, and QA.

Parameter Efficient Fine-tuning (PEFT) –
LoRA: Low Rank Adaptation of LLMs

Training:
1) Freeze the original LLM weights.
2) Inject 2 rank decomposition matrices: B, A.
3) Train the weights of the smaller matrices.

Motivation: to make fine-tuning more feasible by significantly reducing the computational, storage, and
resource requirements associated with traditional full fine-tuning.

Inference:
1) Matrix multiply the low rank matrices
2) Add to original weights

LoRA Example

➔ If r is too low, we will lose information by deleting linearly independent rows.
➔ If r is too high, we will have linearly dependent rows and will not significantly reduce parameters.

LoRA for different tasks

1) Train different rank decomposition matrices for different tasks
2) Update weights before inference

Fine-tuning Iterations Process

Fine-tuning

Data
Preparation

Training

Evaluation

Part II: Fine-Tuning Code Example ��

Model: LLaMA-2-7B-chat Dataset: Patient/doctor interaction

Model: LLaMA-2

● LLaMA-2 – pre-trained Language Models (7B, 13B, 70B) by MetaAI
○ Auto-regressive (decoder-only)
○ Stacking of decoder blocks

Base model Fine-tuned (chatbot)

GPT-3 GPT-3.5-Turbo (ChatGPT)

LLaMA-2 LLaMA-2-chat

● LLaMA-2-chat
○ Fine-tuned LLaMA-2 as a chatbot (Q&A)
○ RLHF – align with human preferences, safe and helpful

LLaMA-2 vs. GPT-3

● Open source

● Public data

● Smaller architecture, more training data
○ Comparable, sometimes better performance than GPT-3

● Fast inference

Preliminaries

Installation and Setup

Hugging Face login

Importing Dependencies

Loading the model – Quantization

● Motivation: How can you leverage advanced models without being hindered by memory constraints?

● Quantization: is a technique where the precision of the model's weights is reduced to make the
model smaller and more efficient, often at the cost of a slight reduction in accuracy.
○ A model with 7B parameters in fp64 (8 bytes) precision would need 56 GB of memory.

● A Solution from HuggingFace: BitsAndBytes
○ dynamically adjust the precision used when loading a model into memory,

irrespective of the precision utilized during training.

Quantization Config

● Training (3-4 times memory)
○ Parameters
○ Gradients
○ Optimizer states

● Inference
○ Parameters

Quantization Config

Tokenizer

● Tokenization: converts the text into a sequence of integers, each representing a specific word,
subword, or character.

● Tokenizing the input data in the exact way the model was trained is crucial!

● Neural models, especially transformer-based ones, expect input data in fixed-sized batches.
● Padding: ensures consistent tensor dimensions across different inputs.

Inference

Inference

Human:
Hi, Are you there? How are you?

Assistance:
Hello! I'm just an AI, I don't have feelings or emotions, so I can't experience emotions like humans do.
I'm here to help answer your questions and provide information to the best of my ability.
How can I assist you today?

Data Preparation

Dataset source.
● Your own dataset
● Existing dataset (e.g., from Hugging Face)

What kind of data.
● Higher quality
● Diversity
● Real
● More

Steps to prepare your data.
● Collect instruction-response pairs
● Concatenate pairs (add prompt template)
● Tokenize: pad, truncate
● Split into train/test

Loading and Preprocessing the Dataset

Dataset Formatting: pairs of prompts and expected outputs.

Example from the Dataset

Patient:

My 5 year old daughter is 5 days post tonsillectomy. After the surgery she seemed to have a lot of nasal mucus and
developed a cough that is very wet. I can hear the mucus in her chest...
Is this normal after a tonsillectomy?

Assistance:

Hello there! As a medical doctor, I understand your concern about your 5-year-old daughter's post-tonsillectomy symptoms.
It's common for children to experience nasal mucus and coughing after a tonsillectomy, and in most cases,
these symptoms are a normal part of the recovery process.
After a tonsillectomy, the body needs time to heal and remove any remaining tissue or debris from the tonsils. This can
cause swelling and inflammation in the nasal passages, leading to increased mucus production and coughing. The mucus in
the chest is likely a result of the nasal mucus draining down the back of the throat and into the lungs.

Training – Supervised Fine-tuning (SFT)

LoRA Configuration

Save training results

lora_alpha

Training – Supervised Fine-tuning (SFT)

Training Arguments

Training – Supervised Fine-tuning (SFT)

**** Running training *****
 Num examples = 3,000
 Num Epochs = 1
 Instantaneous batch size per device = 4
 Total train batch size (w. parallel, distributed & accumulation) = 4
 Gradient Accumulation steps = 1
 Total optimization steps = 750
 Number of trainable parameters = 33,554,432
 [750/750 49:59, Epoch 1/1]

Saving, Loading and Exporting the Model

Saving model checkpoint to ./results/results_sep23/final_checkpoint
tokenizer config file saved in ./results/results_sep23/final_checkpoint/tokenizer_config.json
Special tokens file saved in ./results/results_sep23/final_checkpoint/special_tokens_map.json

Saving

Loading

Exporting

Evaluation

● It is not necessarily exact match anymore (e.g., in classification – sentiment analysis, NER, etc.).
● There is no one correct answer, there are endless possibilities to generate a good answer.

Evaluating generative models is a challenging task.

Important evaluation aspects before LLM deployment.

Answer Relevancy1 Determines whether an LLM output is able to address the
given input in an informative and concise manner.

Correctness2 Determines whether an LLM output is factually correct
based on some ground truth.

Hallucination3 Determines whether an LLM output contains fake or
made-up information.

Responsibility4 Determines whether an LLM output contains harmful and
offensive content.

Task-specific Metrics5 Tailored criteria based on the use case.

Types of Offline Evaluation Automatic Metrics/Scorers

● Human Evaluation – reliable, accurate, but expensive
● Automatic Evaluation

○ Traditional Statistical scorers – reliable, less accurate
○ Model-based scorers – less reliable (probabilistic), more accurate (take semantic into account)

● This shouldn't be a surprise but, scorers that are not LLM-based perform worse than LLM-Evals.

Natural Language Inference (NLI)

The task of determining whether the given “hypothesis”
and “premise” logically:
1) follow – entailment
2) unfollow – contradiction
3) undetermined – neutral

Example:
Premise: "Female players are playing the game"
Hypothesis: "The game is played by only males"

 contradiction

NLI Model for Evaluating Correctness and Hallucinations

● Choosing a fine-tuned NLI model
● For every sample from our test-set (for example in the patient-doctor interaction dataset)

○ Premise: the ground-truth (the response of a doctor)
○ Hypothesis: the generated response of our LLM for the input patient text

“...Your daughter's symptoms, such as nasal mucus and
coughing, are not normal after a tonsillectomy. These symptoms
could indicate a serious complication, and you should seek
immediate medical attention…”

“...It's common for children to experience nasal
mucus and coughing after a tonsillectomy, and in
most cases, these symptoms are a normal part of
the recovery process…”

premise: hypothesis:

 contradiction

G Eval – Using LLM as an Evaluator for a Task-Specific Metric

Microsoft Paper: "NLG Evaluation using GPT-4 with Better Human Alignment"

Questions?

● Fine-tuning overview
● Coffee break ☕
● Fine-tuning code example

📖

💻

● Real use-case from Lightricks
○ Deployed in VideoLeap
○ Resulting in a research paper titled:

“Visual Editing with LLM-based Tool Chaining:
An Efficient Distillation Approach for
Real-Time Applications”

Session 1
(23.9.24)

Session 2
(30.9.24)

��

