63 Lightricks

Fine-Tuning Large Language Models (LLMSs)

Oren Sultan — Al / NLP Researcher m

Computer Science PhD candidate @HebrewU
Researcher — Student @Lightricks (DS Group, LTX Studio)

https://www.linkedin.com/in/oren-sultan-93039146/

&3 Lightricks

Agenda

e Fine-tuning overview ||

Session 1 e C(Coffee break =

(23.9.24) e Fine-tuning code example ™=

63 Lightricks
What You'll Learn Today

e Fine-tuning overview
o What is Fine-tuning?
o When to use Prompt Engineering vs. RAG vs. Fine-tuning?
o How to Fine-tune an LLM?

e Fine-tuning code example

o How to implement Supervised Fine-tuning (SFT) in code?
o How to evaluate an LLM?

63 Lightricks
Part I: Fine-Tuning Overview ||

Pre-training

e Model at the start
o Zero knowledge about the world

o Can’t form English words
e Task: Next token prediction
e Data: Giant corpus of text data from the web: “unlabeled”
B wpon e Training: Self-supervised learning

midnight dreary
while I pondered.

5 o mmnwmﬂl

e After training t ':«ﬂ s o " oo cnansron

LANGUAGEMODEL .
g 1 !

o Learns language
o Learns Knowledge

What is Fine-tuning?

e Fine-tuning is taking a pre-trained (general purpose) model and train some of its weights.
o A general-purpose base model — specialized model for a particular use case.

e Fine-tuning vs. prompt engineering:
o Gets the model to learn the data (adjusting model’s weights), rather than just get access to it.
o Let you put more data into the model than what fits in the prompt.

e Fine-tuning vs. pre-training:

o Requires significantly less data and computational resources.

@ Dataset @ ' =g .
7 sepiants
dical

v JcuE! ‘ Suppont ﬂm’g

Trenscnpts

Fine-tuni
Pre-trained ine-tuning

LLM

Prompting

Base model vs. Fine-tuned model Completions — Example I

Base model: GPT-3

Prompt: How to fine-tune a model?

Completion:

How can I control the complexity of a model?
How do I know when my model is done?
How do I test a model?

ChatGPT
(i.e. GPT-3.5-turbo)

Fine-tuned model: GPT-3.5-turbo (ChatGPT)

Prompt: How to fine-tune a model?

Completion:

Fine-tuning a model typically involves taking a pre-trained model and
further training it on a new dataset specific to your task. Here are the
general steps to fine-tune a model:

1. Choose a pre-trained model: Start by selecting a pre-trained model that
is relevant to your task....

2. Prepare your new dataset: Collect or create a dataset that is specific to
your task...

3. Modify the top layers: Remove the final layers of the pre-trained
model...

4. Fine-tune the model: Train the modified model on your new dataset...
S. Evaluate the model: Once training is complete, evaluate the fine-tuned
model on the validation set to assess its performance...

Change behavior (instruction-based):
More desirable, practical and helpful completions!

Base model vs. Fine-tuned model Completions — Example 11

Skin irritation Skin irritation
Redness Redness
Itching Itching

Base Model LLM @ Fine-tuned LLM @ D

l l Dermatology data.
Probably acne.
o You have a mix of non-inflammatory
= Cardiolosist comedonal acne and inflammatory
0le ardiologis papulopustular acne.

Primary Care
Physician (PCP)

Change knowledge

Dermatologist

Why to Fine-tune?

A smaller (fine-tuned) model can often outperform larger (more expensive) models
on the set of tasks on which it was fine-tuned!

| >

Instruct GPT (1.3B)

GPT-3 (175B)
OpenAl paper: "Training language models to follow instructions with human feedback"

Prompt Engineering vs. Fine-tuning

Prompting Fine-tuning

+ No data (very few) to get started More high-quality data

Smaller upfront cost Upfront compute cost

No technical knowledge needed Needs some technical knowledge

- Much less data fits + Nearly unlimited data fits
- Forgets data + Learn from your data (user’s behavioral signals)
- Hallucinations + Less cost afterwards if smaller model

Generic, side projects, prototypes Domain-specific, enterprise, production usage

Benefits of Fine-tuning your own LLM

Decrease Hallucinations

Performance .
() Increase COIlSlStCIlC}’

On premise

Privacy Prevent leakage

Lower cost per request
Increased transparency
Greater control

Control uptime
Reliability Lower latency
Moderation

Retrieval-Augmented Generation (RAG) vs. Fine-tuning

RAG Fine-tuning

Better in integrating new (dynamic) knowledge - Not suitable for learning evolving knowledge
No training, no retraining - More expensive (high-quality data, re-training)
+ More accurate responses — reducing hallucinations - Still prone to hallucinations
- Slower: two-step process + Optimizes LLM performance for specific tasks

- Lower performance in specific tasks with high-quality data | + Precise control over the training data

- Not suitable for changing the behavior of the responses o Adjusting tone / style of a language
o Aligning with user preferences
o Controlling output format

+ Improve efficiency (latency & cost)

Generic, context-heavy tasks, dynamic knowledge injection Improve performance for specific task

3 Ways to Fine-tune

1) Self-supervised 2) Supervised 3) Reinforcement Learning

- m 1) Supervised Fine-tuning

==l
Training data

Input: Who was the first President of the USA?
Houston, we have a Output: George Washington

- E Please answer the following question. Prompt é n .

2) Train Reward model

Q: {Question}

A: {Answer}""" 3) RL with PPO ‘/\
Prompt — Q—' .

problem.

Reinforcement Learning from Human Feedback (RLHF)

Goal: to improve the alignment, performance, and safety of LLLMs by incorporating human
judgments into their training process.

Step 3
ST Step 2 P
ep " Optimize a policy against
Collect demonstration data Callactcomparisct data, thl:; eward r':\odr:I Z'n
R R L and train a reward model. . rewar o _' 9
and train a supervised policy. reinforcement learning.
A o A prompt and . A new prompt ™
prorlnp fls several model Explain e moon it e
samp! e‘i rom our Explain the moon outputs are landing to a 6 year old the dataset. Sbout frogs
t t t. landingtoa 6 Id
prompt datase anding to a 6 year o sampled. = P +
; ,,,,,,,,,,,,,,,,,,,,,,,, The policy PPO
enerates 2o
A labeler [c] (o] 9 o/)?j&\o
demonstrates the Hoon s natura People went to an output. W
desired output 2 - ‘{4 |
behavior. N \/
St dan Al A labeler ranks
the outputs from @ IR
best to worst. +
This data is used SET 0-0-0-0 The reward model
. RM
to fine-tune GPT-3 .,}?.5{\. calculates a M
with ?“pe"‘”sed N . . reward for el
learning. 2 This data is used RM the output il
@@% to train our ./.).7{\. ’ v
reward model. S g The reward is
O0-0-0-0 used to update T
the policy
using PPO.

OpenAl paper: "Training language models to follow instructions with human feedback"

Reinforcement Learning from Human Feedback (RLHF)

Objective:
Generate aligned text

Token Vocabulary
action a,

Current Context

state s, reward r

)J=| Environment

P

3 Ways to Parameter Training

Retrain all parameters (Full)

Transfer Learning (TL)

Parameter Efficient
Fine-tuning (PEFT)

Computationally expensive
Phenomenon of "catastrophic forgetting'

!

Freeze most of the parameters
Fine-tune the last few layers (head)

Freeze all of the parameters
Augmenting a relatively small number
of trainable parameters.

9 B

L.LLMs are based on the Transformers Architecture

""Attention Is All You Need"
(Vaswani et al.)

J'aime 1'apprentissage
automatique

|

2345 3425 3853

Nx | —(Add&Nom)

Output
Probabilities

Softmax

i

Add & Norm

Feed
Forward

!

f->| Add & Norm

Feed
Forward

Multi-Head
Attention

7
l | Add & Norm |<\

| S

I Nx
| Add & Norm I::

Multi-Head
Attention

Masked
Multi-Head
Attention

A } A)

1 J \ —
Positional Positional
Encoding ® Encoding

, Input Output

Embedding

Embedding

T

Inputs

I

Outputs
(shifted right)

Encoder only models (Auto encoder):

Training objective: Pre-trained using MLLM (Mask Language Modeling).
The training objective is to predict the masked token (denoising objective).
Models: BERT, ROBERTA. Tasks: sentiment analysis, NER.

Decoder only (Auto-regressive):
Training objective: to predict the next token.

They can see only previous tokens.
Models: GPT, LLaMA. Tasks: Text generation.

Encoder - Decoder (sequence to sequence):

Training objective: in TS we train the encoder by span corruption (mask
few adjacent tokens), then replaced by <x> token (which is not part of the
dictionary). Then, the decoder's goal is to reconstruct it.

Models: T5, BART. Tasks: Translation, Summarization, and QA.

Parameter Efficient Fine-tuning (PEFT) —
LoRA: Low Rank Adaptation of LLMs

Motivation: to make fine-tuning more feasible by significantly reducing the computational, storage, and
resource requirements associated with traditional full fine-tuning.

Training:
Encoder 1) Freeze the original LLM weights.
il . 2) Inject 2 rank decomposition matrices: B, A.
elr-attention = — - . . .
3) Train the weights of the smaller matrices.
Updated
weights ﬂ ;%5 T BxA
- Inference:
| Embedding 1) Matrix multiply the low rank matrices | 8 * A = [BXA

2) Add to original weights
;%: +| BxA

LoRA Example

h(x) =Wyx+AWx AW =BA

= Wyx + BAx
‘ Wy, AW € R
W, |+|B A I= Ih(x) B € R™
A€ Rrxk
T T h(x) € R¥™!
Frozen Trainable
d = 1,000

s, (@Xx1)+(rxk =4,000
k = 1,000 trainable parameters

A
=> Ifris too low, we will lose information by deleting linearly independent rows.
=> Ifris too high, we will have linearly dependent rows and will not significantly reduce parameters.

LoRA for different tasks

Task A

Task B

o+

1) Train different rank decomposition matrices for different tasks
2) Update weights before inference

Fine-tuning Iterations Process

Data

Training
Preparation

Fine-tuning

Evaluation

63 Lightricks
Part 1I: Fine-Tuning Code Example

Model LLaMA 2 7B chat Dataset: Patlent/doctor interaction
00 Meta

Model: LLaMA-2

LLaMA-2 — pre-trained Language Models (7B, 13B, 70B) by MetaAl

o Auto-regressive (decoder-only)

o Stacking of decoder blocks

LL.aMA-2-chat

o Fine-tuned LLaMA-2 as a chatbot (Q&A)

o RLHF - align with human preferences, safe and helpful

Base model Fine-tuned (chatbot)
GPT-3 GPT-3.5-Turbo (ChatGPT)
LLaMA-2 LLaMA-2-chat

00 Meta

Output Probability
(next token)

Softmax
L
Linear
A
(Block2..N)
A

Block 1

Add & Norm <
pe———

" Feed
Forward

Add & Norm <
1
Masked

Multi-Head
Attention

tt 4

L)
L Positional
i Encoding

Input (prompt)

LLaMA-2 vs. GPT-3

e Open source
e Public data

e Smaller architecture, more training data
o Comparable, sometimes better performance than GPT-3

e Fast inference

Output Probability
(next token)

[Softmax
, . —
(Linear
A
(Block2..N)
A

~
Block 1
Add & Norm <

Feed
Forward

Preliminaries

Installation and Setup Importing Dependencies

Ipip install -q accelerate==0.21.0
peft==0.4.0 bitsandbytes==0.40.2
transformers==4.31.0 trl1==0.4.7
tensorboard huggingface_hub[cli] xformers

import os
import torch
import transformers
from datasets import load_dataset
from transformers import (
AutoConfig,
’
'huggingface-cli login BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging
)
from peft import LoraConfig
from trl import SFTTrainer

Loading the model — Quantization

e Motivation: How can you leverage advanced models without being hindered by memory constraints?

e (Quantization: is a technique where the precision of the model's weights is reduced to make the
model smaller and more efficient, often at the cost of a slight reduction in accuracy.
o A model with 7B parameters in fp64 (8 bytes) precision would need 56 GB of memory.

e A Solution from HuggingFace: BitsAndBytes
o dynamically adjust the precision used when loading a model into memory,
irrespective of the precision utilized during training.

@

High-presision // ¢

intortets

Quantization Config

e Inference e Training (3-4 times memory)
o Parameters o Parameters
o Gradients
o Optimizer states

model_name "meta-1lama/Llama-2-7b-chat-hf"

{IIII: @}

device_map
use_4bit = True
bnb_4bit_compute_dtype = "floatl6"

bnb_4bit_quant_type = "nf4"

Quantization Config

compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
load_in_4bit=use_4bit,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=use_nested_quant

)

model = AutoModelForCausallLM.from_pretrained(
model_name,
device_map=device_map,
quantization_config=bnb_config,

Tokenizer

e Tokenization: converts the text into a sequence of integers, each representing a specific word,
subword, or character.
e Tokenizing the input data in the exact way the model was trained is crucial!

Fine Tuning is fun for all!

Encoding
[34389, 13932, 278, 318, 1257, 329, 477, 0]

Decoding
Fine Tuning is fun for all!

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

e Neural models, especially transformer-based ones, expect input data in fixed-sized batches.
e Padding: ensures consistent tensor dimensions across different inputs.

tokenizer.pad_token = "<PAD>"
tokenizer.padding_side = "right"

Inference

def display_response(prompt, generated_response):
instruction_start = prompt.find(" [INST]") + len("[INSTI]")
instruction_end = prompt.find(" [/INST]")
instruction = prompt[instruction_start:instruction_end].strip()
prefix = "As a medical doctor, respond to this patient query: Patient:
if instruction.startswith(prefix):
instruction = instruction[len(prefix):].strip()

response_text = generated_response([@] ['generated_text']
doctor_response_start = response_text.find("[/INST]") + len("[/INST]")
doctor_response = response_text[doctor_response_start:].strip()

print("Human:\n” + instruction + “\n” + “Assistance:\n” + doctor_response)

prompt = """<s>[INST] Hi, Are you there? How are you? [/INST] """
generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
display_response(prompt, generator(prompt, max_new_tokens=100))

Inference

Human:
Hi, Are you there? How are you?

Assistance:

Hello! I'm just an Al I don't have feelings or emotions, so I can't experience emotions like humans do.
I'm here to help answer your questions and provide information to the best of my ability.

How can I assist you today?

Data Preparation

Dataset source.
® Your own dataset
e [Existing dataset (e.g., from Hugging Face)

What kind of data.
Higher quality
Diversity

Real

More

r
- Data Prepaation for Fine-Tuning

4 5 , DATASET o

[

Data setaation data:
Your own quiglity paires

=il
What kind of your date
, add pvcmstmmprse‘

vo?". —
& °

i A

o °

Totte ¢and of data
0. Fesponse pairs
ind traint-/ test

YOUR GIND OF pAISS-

What kind of data

, Your excersense rairs

@ - Collect &~ |
INSRUCTION
© * “:-RESPONSE -
© ¢ fResean) o

Steps to prepare your data.
e (ollect instruction-response pairs T
. &-Response espose
e Concatenate pairs (add prompt template) 2y g T Rn——
e Tokenize: pad, truncate @ i | 2 é@;z? Pt
.. . ?) hise 1100 & ‘
e Split into train/test : == : |

il ¥ Steps to prepare your “a |
1 g Concartate pairs
B

- toTrain/Test o

Loading and Preprocessing the Dataset
Dataset Formatting: pairs of prompts and expected outputs. ~ <s>[INST] {user_message} [/INST] {response}

def template_dataset(sample):
cleaned_response = sample['Doctor'].replace('<start>', '').replace('<end>', '').strip()
instruction = f"<s>[INST] As a medical doctor, respond to this patient query: Patient: {sample['Patient']} [/INST]"
response = f"Doctor: {cleaned_response}"
sample["text"] = instruction + response + tokenizer.eos_token
return sample

dataset_name = 'sid6i7/patient-doctor’
dataset = load_dataset(dataset_name, split="train")
dataset_sample = 3000
if dataset_sample > 0:
dataset_shuffled = dataset.shuffle(seed=1234)
dataset = dataset_shuffled.select(range(dataset_sample))

dataset = dataset.map(template_dataset, remove_columns=[f for f in dataset.features if not f == 'text'])
new_model = 'Llama-7b-medical-assistance’

Example from the Dataset

Patient:

My 5 year old daughter is 5 days post tonsillectomy. After the surgery she seemed to have a lot of nasal mucus and
developed a cough that is very wet. I can hear the mucus in her chest...
Is this normal after a tonsillectomy?

Assistance:

After a tonsillectomy, the body needs time to heal and remove any remaining tissue or debris from the tonsils. This can

cause swelling and inflammation in the nasal passages, leading to increased mucus production and coughing. The mucus in
the chest is likely a result of the nasal mucus draining down the back of the throat and into the lungs.

Training — Supervised Fine-tuning (SFT)

LoRA Configuration

lora_r = 64
lora_alpha = 64
lora_dropout = 0.1
peft_config = LoraConfig(r=lora_r, lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
inference_mode=False, bias="none", task_type="CAUSAL_LM")

Save training results

output_dir = "./results"
final_checkpoint_dir = os.path.join(output_dir, "final_checkpoint")

lora_alpha
W’:W+%-(A-B)

Training — Supervised Fine-tuning (SFT)
Training Arguments

training_arguments = TrainingArguments (
output_dir=output_dir,
num_train_epochs=1, max_steps=-1,
fple=True, bfl6=False,
per_device_train_batch_size=4, gradient_accumulation_steps=1,
max_grad_norm = 0.3,
learning_rate=4e-5, lr_scheduler_type = "constant"
optim="paged_adamw_32bit", weight_decay = 0.001,
group_by_1length = True,
save_steps=50, logging_steps=10,
report_to="tensorboard")

max_seq_Llength = None
packing = False

Training — Supervised Fine-tuning (SFT)

trainer = SFTTrainer(model=model, train_dataset=dataset,
dataset_text_field="text", peft_config=peft_config,
tokenizer=tokenizer, args=training_arguments,
max_seq_length=max_seq_length, packing=packing)

resume_checkpoint = None
transformers. logging.set_verbosity_info()

trainer.train(resume_checkpoint)

#IEE Running training *%#%*
Num examples = 3,000
Num Epochs = 1
Instantaneous batch size per device = 4
Total train batch size (w. parallel, distributed & accumulation) = 4
Gradient Accumulation steps = 1
Total optimization steps = 750
Number of trainable parameters = 33,554,432
[750/750 49:59, Epoch 1/1]

Saving, Loading and Exporting the Model

Saving
trainer.save_model(final_checkpoint_dir)
Saving model checkpoint to ./results/results_sep23/final_checkpoint

tokenizer config file saved in ./results/results_sep23/final_checkpoint/tokenizer_config.json
Loading Special tokens file saved in ./results/results_sep23/final_checkpoint/special_tokens_map.json

output_dir = "./results/results—-sep23"
final_checkpoint_dir = os.path.join(output_dir, "final_checkpoint")
device_map = {"": 0}

reloaded_model = AutoPeftModelForCausallLM.from_pretrained(final_checkpoint_dir,
low_cpu_mem_usage=True, return_dict=True, torch_dtype=torch.floatl6,
device_map=device_map)
reloaded_tokenizer = AutoTokenizer.from_pretrained(final_checkpoint_dir)
merged_model = reloaded_model.merge_and_unload()

reloaded_generator = pipeline(task="text-generation", model=merged_model,
tokenizer=reloaded_tokenizer)

Exporting

hf_repo = "1lama-2-7b-chat-hf-instruct-medical-assistance"
merged_model.push_to_hub(hf_repo, max_shard_size="4GB")

Evaluation

Evaluating generative models is a challenging task.

e [t is not necessarily exact match anymore (e.g., in classification — sentiment analysis, NER, etc.).
e There is no one correct answer, there are endless possibilities to generate a good answer.

Important evaluation aspects before LLM deployment.

Determines whether an LLM output is able to address the

Answer Relevancy : : : : : .
given input in an informative and concise manner.

Correctness Determines whether an LLM output is factually correct
based on some eground truth.

Hallucination Determines whether an LLM output contains fake or

made-up information.

Responsibility Determines whether an LLM output contains harmful and

offensive content.

Task-specific Metrics

Tailored criteria based on the use case.

Types of Offline Evaluation Automatic Metrics/Scorers

e Human Evaluation — reliable, accurate, but expensive
e Automatic Evaluation

o Traditional Statistical scorers — reliable, less accurate

o Model-based scorers — less reliable (probabilistic), more accurate (take semantic into account)
e This shouldn't be a surprise but, scorers that are not LLM-based perform worse than LLM-Evals.

Statistical Scorers Model-Based Scorers

— GEval
— Prometheus

— QAG Score
5 GRIScoxe
— SelfCheckGPT

— BERTScore
— MoverScore

— Levenshtein Distance

@ word-based (D) Embedding Models (O) Large Language Models

() character—based () other NLP models

Natural Language Inference (NLI)

The task of determining whether the given “hypothesis”

and “premise” logically:

1) follow — entailment

2) unfollow — contradiction
3) undetermined — neutral

Example:

Premise: "Female players are playing the game"
Hypothesis: "The game is played by only males"

—

NLP

named entity
recognition(NER)

parrt-of-speech
tagging(POS)
syntactic
text parsing
categorization

coreference
resolution ans

machine
translation

contradiction

NLI Model for Evaluating Correctness and Hallucinations

e Choosing a fine-tuned NLI model

e For every sample from our test-set (for example in the patient-doctor interaction dataset)
o Premise: the ground-truth (the response of a doctor)
o Hypothesis: the generated response of our LLLM for the input patient text

premise: hypothesis:

“...It's common for children to experience nasal “...Your daughter's symptoms, such as nasal mucus and

mucus and coughing after a tonsillectomy, and in coughing, are not normal after a tonsillectomy. These symptoms
most cases, these symptoms are a normal part of could indicate a serious complication, and you should seek

the recovery process...” immediate medical attention...”

contradiction

G Eval - Using LLM as an Evaluator for a Task-Specific Metric

(" Input Context N
& z N
Task Introduction \ Article: Paul Merson has restarted his row with
Andros Townsend after the Tottenham midfielder
You will be given one summary written for a news was brought on with only seven minutes remaining
article. Your task is to rate the summary on one) \in his team 's 0-0 draw with Burnley on -+ Y,
metric \
A (" Input Target
Summary: Paul merson was brought on with only
(N . = seven minutes remaining in his team 's 0-0 draw
Evaluation Criteria \with burnley ------)
Coherence (1-5) - the collective quality of all Evaluation Form (scores ONLY):
sentences. We align this dimension with the DUC /
\quality question of structure and coherence “*+--* - Coherence:
Auto
CoT v
r Evaluation Steps N p ~
1. Read the news article carefully and identify the 0.6
main topic and key points.
2. Read the summary and compare it to the news 0.4
article. Check if the summary covers the main topic |4 G-Eval 2
and key points of the news article, and if it presents :
i i —
them in a clear and logical order. @ 0
3. Assign a score for coherence on a scale of 1 to 1 2 3 4 5
10, where 1 is the lowest and 5 is the highest based
(n the Evaluation Criteria. / \ T /
Weighted Summed Score: 2.59

A

Figure 1: The overall framework of G-EVAL. We first input Task Introduction and Evaluation Criteria to the LLM,
and ask it to generate a CoT of detailed Evaluation Steps. Then we use the prompt along with the generated CoT to
evaluate the NLG outputs in a form-filling paradigm. Finally, we use the probability-weighted summation of the
output scores as the final score.

Microsoft Paper: "NLG Evaluation using GPT-4 with Better Human Alignment"

&3 Lightricks

Questions?
e Fine-tuning overview ||
Session 1 e C(offee break =
(23.9.24) e Fine-tuning code example ™=

